57 research outputs found

    Draft Genome Sequence of Rhodococcus erythropolis NSX2, an Actinobacterium Isolated from a Cadmium-Contaminated Environment

    Get PDF
    Rhodococcus erythropolis NSX2 is a rhizobacterium isolated from a heavy metal–contaminated environment. The 6.2-Mb annotated genome sequence shows that this strain harbors genes associated with heavy-metal resistance and xenobiotics degradation

    Bacterial and fungal communities are differentially modified by melatonin in agricultural soils under abiotic stress

    Get PDF
    An extensive body of evidence from the last decade has indicated that melatonin enhances plant resistance to a range of biotic and abiotic stressors. This has led to an interest in the application of melatonin in agriculture to reduce negative physiological effects from environmental stresses that affect yield and crop quality. However, there are no reports regarding the effects of melatonin on soil microbial communities under abiotic stress, despite the importance of microbes for plant root health and function. Three agricultural soils associated with different land usage histories (pasture, canola or wheat) were placed under abiotic stress by cadmium (100 or 280 mg kg−1 soil) or salt (4 or 7 g kg−1 soil) and treated with melatonin (0.2 and 4 mg kg−1 soil). Automated Ribosomal Intergenic Spacer Analysis (ARISA) was used to generate Operational Taxonomic Units (OTU) for microbial community analysis in each soil. Significant differences in richness (α diversity) and community structures (ÎČ diversity) were observed between bacterial and fungal assemblages across all three soils, demonstrating the effect of melatonin on soil microbial communities under abiotic stress. The analysis also indicated that the microbial response to melatonin is governed by the type of soil and history. The effects of melatonin on soil microbes need to be regarded in potential future agricultural applications

    Arabidopsis Thaliana leaf disulfide proteome

    Get PDF
    Comunicaciones a congreso

    Comparative analysis of structural variations due to genome shuffling of Bacillus subtilis VS15 for improved cellulase production

    Get PDF
    Cellulose is one of the most abundant and renewable biomass products used for the production of bioethanol. Cellulose can be efficiently hydrolyzed by Bacillus subtilis VS15, a strain isolate obtained from decomposing logs. A genome shuffling approach was implemented to improve the cellulase activity of Bacillus subtilis VS15. Mutant strains were created using ethyl methyl sulfonate (EMS), N-Methyl-Nâ€Č nitro-N-nitrosoguanidine (NTG), and ultraviolet light (UV) followed by recursive protoplast fusion. After two rounds of shuffling, the mutants Gb2, Gc8, and Gd7 were produced that had an increase in cellulase activity of 128%, 148%, and 167%, respectively, in comparison to the wild type VS15. The genetic diversity of the shuffled strain Gd7 and wild type VS15 was compared at whole genome level. Genomic-level comparisons identified a set of eight genes, consisting of cellulase and regulatory genes, of interest for further analyses. Various genes were identified with insertions and deletions that may be involved in improved celluase production in Gd7.. Strain Gd7 maintained the capability of hydrolyzing wheatbran to glucose and converting glucose to ethanol by fermentation with Saccharomyces cerevisiae of the wild type VS17. This ability was further confirmed by the acidified potassium dichromate (K2Cr2O7) method

    New frontiers in agriculture productivity : optimised microbial inoculants and in situ microbiome engineering

    Get PDF
    Increasing agricultural productivity is critical to feed the ever-growing humanpopulation. Being linked intimately to plant health, growth and productivity, harnessing the plant microbiome is considered a potentially viable approach for the next green revolution, in an environmentally sustainable way. In recent years, our understanding of drivers, roles, mechanisms, along with knowledge to manipulate the plant microbiome, have significantly advanced. Yet, translating this knowledge to expand farm productivity and sustainability requires the development of solutions for a number of technological and logistic challenges. In this article, we propose new and emerging strategies to improve the survival and activity of microbial inoculants, including using selected indigenous microbes and optimising microbial delivery methods, as well as modern gene editing tools to engineer microbial inoculants. In addition, we identify multiple biochemical and molecular mechanisms and/approaches which can be exploited for microbiome engineering in situ to optimise plant-microbiome interactions for improved farm yields. These novel biotechnological approaches can provide effective tools to attract and maintain activities of crop beneficial microbiota that increase crop performance in terms of nutrient acquisition, and resistance to biotic and abiotic stresses, resulting in an increased agricultural productivity and sustainability

    UV index and climate seasonality explain fungal community turnover in global drylands

    Get PDF
    Aim: Fungi are major drivers of ecosystem functioning. Increases in aridity are known to negatively impact fungal community composition in dryland ecosystems globally; yet, much less is known on the potential influence of other environmental drivers, and whether these relationships are linear or nonlinear. Time period: 2017–2021. Location: Global. Major taxa studied: Fungi. Methods: We re-analysed multiple datasets from different dryland biogeographical regions, for a total of 912 samples and 1,483 taxa. We examined geographical patterns in community diversity and composition, and spatial, edaphic and climatic factors driving them. Results: UV index, climate seasonality, and sand content were the most important environmental predictors of community shifts, showing the strongest association with the richness of putative plant pathogens and saprobes. Important nonlinear relationships existed with each of these fungal guilds, with increases in UV and temperature seasonality above 7.5 and 900 SD (standard deviation x 100 of the mean monthly temperature), respectively, being associated with an increased probability of plant pathogen and unspecified saprotroph occurrence. Conversely, these environmental parameters had a negative relationship with litter and soil saprotroph richness. Consequently, these ecological groups might be particularly sensitive to shifts in UV radiation and climate seasonality, which is likely to disturb current plant–soil dynamics in drylands. Main conclusions: Our synthesis integrates fungal community data from drylands across the globe, allowing the investigation of fungal distribution and providing the first evidence of shifts in fungal diversity and composition of key fungal ecological groups along diverse spatial, climatic and edaphic gradients in these widely distributed ecosystems. Our findings imply that shifts in soil structure and seasonal climatic patterns induced by global change will have disproportionate consequences for the distribution of fungal groups linked to vegetation and biogeochemical cycling in drylands, with implications for plant–soil interactions in drylands.C.C. is supported by the European Commission under the Marie Sklodowska-Curie Grant Agreement No. 702057 (DRYLIFE). C.C. acknowledges funding from the Italian National Program for Antarctic Research (PNRA) and is supported by a PNRA postdoctoral fellowship. E.E. is supported by an Australian Research Council DECRA (Discovery Early Career Researcher Award) fellowship (DE210101822). M.D-B. is supported by a project from the Spanish Ministry of Science and Innovation (PID2020-115813RA-I00), and a project PAIDI (Andalusian Research, Development and Innovation Plan) 2020 from the Junta de Andalucía (P20_00879). Microbial distribution and colonization research in B.K.S.'s lab is funded by the Australian Research Council (DP210102081). E.G. is supported by the European Research Council Grant agreement 647038 (BIODESERT)

    Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest

    Get PDF
    Fire is one of the predominant drivers of the structural and functional dynamics of forest ecosystems. In recent years, novel fire regimes have posed a major challenge to the management of pyrodiverse forests. While previous research efforts have focused on quantifying the impacts of fire on above-ground forest biodiversity, how microbial communities respond to fire is less understood, despite their functional significance. Here, we describe the effects of time since fire, fire frequency and their interaction on soil and leaf litter fungal and bacterial communities from the pyrodiverse, Eucalyptus pilularis forests of south-eastern Australia. Using structural equation models, we also elucidate how fire can influence these communities both directly and indirectly through biotic-abiotic interactions. Our results demonstrate that fire is a key driver of litter and soil bacterial and fungal communities, with effects most pronounced for soil fungal communities. Notably, recently burnt forest hosted lower abundances of symbiotic ectomycorrhizal fungi and Acidobacteria in the soil, and basidiomycetous fungi and Actinobacteriota in the litter. Compared with low fire frequencies, high fire frequency increased soil fungal plant pathogens, but reduced Actinobacteriota. The majority of fire effects on microbial communities were mediated by fire-induced changes in litter and soil abiotic properties. For instance, recent and more frequent fire was associated with reduced soil sulphur, which led to an increase in soil fungal plant pathogens and saprotrophic fungi in these sites. Pathogenic fungi also increased in recently burnt forests that had a low fire frequency, mediated by a decline in litter carbon and an increase in soil pH in these sites. Synthesis. Our findings indicate that predicted increases in the frequency of fire may select for specific microbial communities directly and indirectly through ecological interactions, which may have functional implications for plants (increase in pathogens, decrease in symbionts), decomposition rates (declines in Actinobacteriota and Acidobacteriota) and carbon storage (decrease in ectomycorrhizal fungi). In the face of predicted shifts in wildfire regimes, which may exacerbate fire-induced changes in microbial communities, adaptive fire management and monitoring is required to address the potential functional implications of fire-altered microbial communities

    How fungi’s knack for networking boosts ecological recovery after bushfires

    Get PDF
    The unprecedented bushfires that struck the east coast of Australia this summer killed an estimated one billion animals across millions of hectares. Scorched landscapes and animal corpses brought into sharp relief what climate-driven changes to wildfire mean for Australia’s plants and animals. Yet the effects of fire go much deeper, quite literally, to a vast and complex underground world that we know stunningly little about, including organisms that might be just as vulnerable to fire, and vital to Australia’s ecological recovery: the fungi

    Plant microbiomes : do different preservation approaches and primer sets alter our capacity to assess microbial diversity and community composition?

    Get PDF
    The microbial communities associated with plants (the plant microbiome) play critical roles in regulating plant health and productivity. Because of this, in recent years, there have been significant increase in studies targeting the plant microbiome. Amplicon sequencing is widely used to investigate the plant microbiome and to develop sustainable microbial agricultural tools. However, performing large microbiome surveys at the regional and global scales pose several logistic challenges. One of these challenges is related with the preservation of plant materials for sequencing aiming to maintain the integrity of the original diversity and community composition of the plant microbiome. Another significant challenge involves the existence of multiple primer sets used in amplicon sequencing that, especially for bacterial communities, hampers the comparability of datasets across studies. Here, we aimed to examine the effect of different preservation approaches (snap freezing, fresh and kept on ice, and air drying) on the bacterial and fungal diversity and community composition on plant leaves, stems and roots from seven plant species from contrasting functional groups (e.g. C3, C4, N-Fixers, etc.). Another major challenge comes when comparing plant to soil microbiomes, as different primers sets are often used for plant vs. soil microbiomes. Thus, we also investigated if widely used 16S rRNA primer set (779F/1193R) for plant microbiome studies provides comparable data to those often used for soil microbiomes (341F/805R) using 86 soil samples. We found that the community composition and diversity of bacteria or fungi were robust to contrasting preservation methods. The primer sets often used for plants provided similar results to those often used for soil studies suggesting that simultaneous studies on plant and soil microbiomes are possible. Our findings provide novel evidence that preservation approaches do not significantly impact plant microbiome data interpretation and primer differences do not impact the treatment effect, which has significant implication for future large-scale and global surveys of plant microbiomes

    detection and scavenging of hydroxyl radical via d phenylalanine hydroxylation in human fluids

    Get PDF
    Abstract Hydroxyl radical (.OH) is highly reactive, and therefore very short-lived. Finding new means to accurately detect .OH, and testing the ability of known .OH scavengers to neutralize them in human biological fluids would leverage our ability to more effectively counter oxidative (.OH) stress-mediated damage in human diseases. To achieve this, we pursued the evaluation of secondary products resulting from .OH attack, using a detection system based on Fenton reaction-mediated D -phenylalanine ( D -Phe) hydroxylation. This reaction in turn generates o-tyrosine (o-tyr), m-tyrosine (m-tyr) and p-tyrosine (p-tyr). Here, these isomers were separated by HPLC, equipped with fluorescence detectors due to the natural fluorescence of these hydrotyrosines. By extension, we found that, adding radical scavengers competed with D -Phe on .OH attack, thus allowing to determine the .OH quenching capacity of a given compound expressed as inhibition ratio percent (IR%). Using a kinetic approach, we then tested the .OH scavenging capacity (OHSC) of well-known antioxidant molecules. In a test tube, N,Nâ€Č-dimethylthiourea (DMTU) was the most efficient scavenger as compared to Trolox and N-Acethyl- L -cysteine, with NAC being the less effective. OHSC assay was then applied to biological fluid samples as seminal plasma, human serum from normal subjects and patients undergoing hemodialysis (HD), colostrum and human breast milk from mothers that received daily doses of 30 g of chocolate (70% cocoa) during pregnancy. We found that a daily administration of dark chocolate during pregnancy almost doubled OHSC levels in breast milk (1.88 ± 0.12 times, p D -Phe hydroxylation is a suitable method for routine and non-invasive evaluation of .OH detection and its scavenging in human biological fluids
    • 

    corecore